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Abstract 
 
There exists significant prior work using tracers or pre-placed 
hardened markers within friction stir welding (FSWing) to 
experimentally explore material flow within the FSW process.  
Our experiments replaced markers with a thin sheet of copper 
foil placed between the 6061 aluminum lap and butt joints that 
were then welded.  The absorption characteristics of x-rays for 
copper and aluminum are significantly different allowing for 
non-destructive evaluation (NDE) methods such as x-ray 
computed tomography (CT) to be used to demonstrate the 
material movement within the weldment on a much larger 
scale than previously shown.   3D CT reconstruction of the 
copper components of the weldment allows for a unique view 
into the final turbulent state of the welding process as process 
parameters are varied.  The x-ray CT data of a section of the 
weld region was collected using a cone-beam x-ray imaging 
system developed at the INL.  Six-hundred projections were 
collected over 360-degrees using a 160-kVp Bremsstrahlung 
x-ray generator (25-micrometer focal spot) and amorphous-
silicon x-ray detector.  The region of the object that was 
imaged was about 3cm tall and 1.5cm x 1cm in cross section, 
and was imaged at a magnification of about 3.6x.  The data 
were reconstructed on a 0.5x0.5x0.5 mm3 voxel grid.  After 
reconstruction, the aluminum and copper could be easily 
discriminated using a gray level threshold allowing 
visualization of the copper components.  Fractal analysis of 
the tomographic reconstructed material topology is 
investigated as a means to quantify macro level material flow 
based on process parameters.  The results of multi-pass FSWs 
show increased refinement of the copper trace material.  
Implications of these techniques for quantifying process flow 
are discussed. 
 
 

Introduction 
 

The objective of this paper is to explore the potential use of x-
ray computed tomography (CT) and fractal analysis to further 
investigate material properties of friction stir welds produced 
using a variety of welding tools and methods.  Since this is a 
feasibility study rather than an extensive parametric study of 

tooling, processes, and methods, we have used a simple 
sandwich-lap joint in which a tracer sheet of copper within an 
aluminum matrix serves as a marker to study mixing within 
lap and butt joints.   
 
In this paper, we will only present a series of reconstructions 
for a particular lap weld. The 3D x-ray CT reconstruction of 
the broken up and redistributed copper within the weldment 
gives a useful view of the final turbulent state of the welding 
process.  The intent is to compare the final state of a weld 
made with a particular set or parameters to other welds made 
with different process parameters to increase the general 
understanding of the relationship of process parameters to 
weldment properties.   
 
In addition to a better understanding of weldment material 
properties, the overall uniformity and stability of the FSW 
process within weldments can be investigated by comparing 
the properties of segments along the weld’s length.  This 
requires a quantitative means of measuring the changes in the 
size and spatial distribution of entrained tracer particles.  
Furthermore, this requires quantifying structural 
characteristics across numerous length scales; which is an 
analysis problem shared across many technical fields, such as 
the development of new materials [1], and the analysis of 
medical, homeland security, Department of Defense, and DOE 
imagery [2–7].  Each of these applications requires a similar 
mathematical analysis to obtaining basic knowledge and 
quantify the underlying, fundamental properties of the 
spatially oriented sub-structures across the varying length 
scales.   
 
Such a highly accurate spatially oriented structural model can 
be obtained via a generalized form of unified fractal statistics 
quantification techniques currently under development [8–10].  
The first of these statistics, i.e., fractal dimension [11], has 
been well studied; however the remaining two, lacunarity and 
connectivity [5,8–13], have rarely been discussed in the open 
literature.  It has been shown that by fusing fractal dimension 
and a term Musgrave refers to as a lacunarity parameter [14] 
(which we note as a combination of our lacunarity and 
connectivity), and using a chaos-like generation algorithm, 



one can produce life-like terrain for digital imagery, similar to 
those seen in the movie industry with the production of life-
like terrain for digital imagery. 

Properly formulated, fractal statistics lend themselves to 
multi-dimensional data space analysis and quantification 
because they measure fundamental n-dimensional topological 
parameters.  Thus, the new unified fractal statistics will be 
used to quantify the distribution of the copper tracer material 
within the prototypical CT-reconstructed friction stir welded 
examples shown within this paper.  The results presented also 
show how multi-pass FSW (also known as friction stir 
processing (FSP)) can, as might be expected, further refine the 
average particle size of tracer materials with each processing 
pass (see Figure 4). 

The prototypical Friction Stir weldments to be examined via 
the CT process will be briefly described, followed by a brief 
introduction to the x-ray CT process, with a sample 
reconstruction.  Then fractal statistics will be visually 
correlated with the reconstructed FSW welds under 
investigation.  

Experimental Setup 

Materials  
All FSWs were performed on 6061-T6511 aluminum base 
material.  Coupon dimensions were nominally 4 in. x 8 in x 
0.508 in., see the sandwich configuration in Figure 1. The 
sandwich material was clamped with 6 hold-downs, taken in 
pairs, nominally equal distance along the coupon, compressed 
against a steel tie down fixture approximately 2 in. thick, 
which can be water cooled (for these welds, the water cooling 
was turned off), as seen in Figure 2.  Similar experiments have 
also been performed with the coupon affixed to a copper, 
water-cooled plate, nominally 24 in. x 5 in. Numerous sample 
plates have been created; although, due to the shortness of the 
project length and funding only one sample plate section has 
undergone tomographic reconstruction. 

Figure 1: The experimental test sample consisted of a 
sandwich of 1/8” 6061-T6511 aluminum plate, 0.008 in. 
copper shim stock (SHOPAID Shim IN A CAN, Shop-Aid Inc. 
Woburn, MA 01801), and a 3/8” 6061-T6511 Aluminum plate.  
The FSW tool was normal to the top surface of the sandwich 
(i.e. the tool was oriented vertically downward in the image 
shown above).  

 
Figure 2: Experimental fixture.  The fixture allows for the 

measurement of input and output cooling fluid temperatures 

which can be used to determine heat extraction amounts (not 

used within this set of experiments). 

FSW Tools 

The basic tool design is shown in Figure 3.  The FSW tool was 
fashioned out of T15 tool steel. Little to no appreciable tool 
wear has been shown to occur, verified via visual inspection 
and scanning electron microscope (SEM) analysis of the 
welded region, see Figure 4. 

Figure 3: All tools were based on this scrolled pin and 

shoulder design.  The witness ruler within the image on the 

right is in units of millimeters. 



 
Figure 4: Scanning electron microscope (SEM) analysis of a 

small region within the tomographic reconstructed weld zone.  

This analysis shows that the copper particles entrained within 

the welded region range from hundreds of microns, down to 

only a few microns.  Furthermore, minimal wear from the 

FSW tool is shown in that very few micron sized iron particles 

have become entrained within the weldment.  Note that the 

copper particles in the bottom left image are smaller on the 

left side – i.e. the side that was processed twice. 

 

FSW Procedures 

Numerous welds were made with various travel speeds (from 
4 inches per minute to 12 inches per minute) and rotational 
speeds (from 600 rpm to 2400 rpm).  The tomographic 
reconstructions of prototypical FSWs presented here used a 
travel speed of 8 in./min and a tool rotational speeds of 1000, 
1304, and 1304 rpm, as seen in Figure 4, reading left to right.  
The two left welds, within Figure 4, were also rastered, i.e., 
these welds were made in two passes.  The second pass was 
adjacent to the first, so that the weld zones merged into one 
region while maintaining minimal overlap within the pin 
regions of each weld zone.  The rotational tool speed remained 
constant for both the plunge and travel portions of the welds.  
 
X-ray Computed Tomography 

X-ray computed tomography (CT) is a technique for non-
destructive evaluation (NDE) that shares the physics and 
mathematical background with its more commonly known 
imaging modality, the medical CAT scanner [15].  In recent 
years, CT has become a common tool in materials-
characterization laboratories [16].  X-ray radiographs are two-
dimensional (2D) projections of a three-dimensional (3D) 
object.  By collecting radiographs from a set of viewing 
locations, for instance by collecting images as the object 
rotates, a 3D data set (2 dimensions in the radiograph and the 
rotation angle) is obtained, and these data are transformed into 
a 3D map of the material distribution in the object, see Figure 
5.  Using Bremstrahlung x-ray sources and conventional 
detectors, the pixel intensity in this 3D map is proportional to 
the density and effective atomic number of the object, 
essentially a map of the anatomy of the object.  Because 
copper is substantially denser than aluminum, high contrast is 
achieved by using copper as the marker material in aluminum 
weldments.   
 
 
 

 
 
Figure 5: Schematic visualization of the X-ray Transmission 
Computed Tomography imaging process: Two dimensional x-
ray images are projections of the material density and 
thickness in the object under examination.  A set of 
projections is collected as the object is rotated through 360˚.  
These projections are processed in a reconstruction step to 
create a three-dimensional representation of the object in 
which the intensity of a volume element (voxel) is 
proportional to the material density in that region of the 
object.  The density and atomic number of aluminum and 
copper are sufficiently different to be able to readily 
differentiate these materials in the data and determine copper 
distribution in the weld region. 

 
In these experiments, we used a 3D cone-beam CT imaging 
system that has been developed at the Idaho National 
Laboratory.  The system consists of a micro-focus x-ray tube, 
a 25cm by 20cm amorphous-silicon x-ray detector, a motion 
system for object manipulation, and an integrated computer-
control system.  Projection data were collected at 160kVp 
using a 25μm focal spot and a magnification (determined by 
optical geometry) of 3.6.  Six hundred projections were 
collected as the weld sample was rotated through 360 degrees.  
Two example projections separated in angle by 90-degrees are 
shown in Figure 6.  When these data are shown in sequence 
(e.g., as a movie), the distribution of copper material, 
including features such as swirls due to the tool motion, can 
easily be processed by the human eye and qualitatively 
visualized.  However, it is difficult to perform any metrology 
because of the ambiguity in depth inherent in the projection 
process.  The data were reconstructed using the cone-beam 
reconstruction algorithm developed by Feldkamp, Davis, and 
Kress [17].  Two slices from the 3D data set, one parallel and 
one perpendicular to the rotation axis, are shown in Figure 7.  
In the projection data (Figure 6), the pixel intensity is 
proportional to the line integral of the object density along a 
line from source to detector, however the reconstructed image 
is a map in which the pixel intensity is proportional to object 
density.  From the reconstructed CT data it is possible to 
determine the distribution of copper in the weld zone.  The 
actual x-ray CT system used is shown in Figure 8.  By 
thresholding the images in Figure 7, a 3D data set of only the 
copper trace material can be visualized as in Figure 9.  This is 
the type of data set to which we will apply fractal analysis. 



 
 
 

 

 

 

 

 

 

 

 

 

Figure 6: Side and top view projections of the weld sample 
looking into the lap weld joint. . The brighter/whiter areas 
contain copper, which has been either placed between the 
aluminum plates before the weld (Figure 1) or entrained into 
the weld joint during the FSW process (Figure 4).  The pixel 
intensity shown in these images is proportional to the density 
and x-ray path length through the object, thereby making the 
copper regions brighter than the aluminum regions, i.e. this is 
best shown by the long paths through the copper sheet which 
result in the brightest portion of the left image.   
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Sample CT slices from data in Figure X1.  In the 
reconstructed images, the pixel intensity is proportional to the 
average density in a voxel.  From this 3D data, accurate 
metrology and copper size and distribution can be determined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: INL’s developmental X-ray Transmission Computed 
Tomography (XTCT) imaging system.  This system is used to 
analyze numerous types of targets, in this case a chemical 
compound is under analysis within the flask.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: X-ray tomographic reconstruction thresheld pixel 
intensity to select only copper material, i.e. a “black and 
white” threshold limit was set so that the aluminum matrix 
disappeared leaving only the copper particles from within the 
weld region.  Figures 6 and 7 are from the top weld shown 
above, while this thresheld reconstruction shown above is 
based on the bottom two welds.   

 
Unified Fractal Analysis 

Mandelbrot theorized that three parameters fully described a 
fractal’s characteristics: fractal dimension, lacunarity, and 
what will be referred to here as connectivity [11]. Lacunarity 
and connectivity are largely unstudied, partly because these 
parameters lacked widely accepted rigorous definitions. One 
example of the effects of Musgrave’s lacunarity [14] on image 
texture for a constant fractal dimension of 2.5 is shown in 
Figure 10 [14].    The importance of these fractal textures is 
that they demonstrate the effects of maintaining a constant 
fractal dimension while allowing the textural “look” to change 
significantly with a change in lacunarity and connectivity.  
Unfortunately, these texture generation algorithms are not 
general for n-dimensional data sets and Musgrave’s lacunarity 
parameter is not based on any generally-accepted definition. 
 
 
 
 
 
 
 
 
Figure 10: Musgrave’s fractal textures with fixed fractal 
dimension of 2.5 and lacunarity parameters of A) 2, B) 3, and 
C) 5.  
 
Recently, we have developed a new, more general framework 
for fractals that will encompass each of the three fractal 
features as well as rigorously define them [8–10]. Our work to 
date has centered on a formal definition for lacunarity [10]. 
This work is separate from the previous work on lacunarity 
[12] in that we have approached the definition through a new 
set of measures applied to a fractal’s optimal cover. We define 
a cover as a set of open balls that contain all of the data under 
analysis, i.e., it is a set of open hyper-spheres of a given size 
that, when placed over the data, will contain all of it. We 
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define the optimal cover as the cover with the minimum 
number of balls, or covering elements. The simplest method to 
obtain such a cover in an automated process is via a clustering 
algorithm. 

These measures are based on spanning trees formed on the 
optimal cover. This allows our definitions to be more general, 
allowing the three parameters to fully decouple into fractal 
dimension, lacunarity, and connectivity in a fundamental way 
while remaining fully connected to the topologic basis behind 
the fractal concept. The underlying concepts for each of these 
statistics might be best described through a series of simple 
diagrams, see Figures 11A-D.   

 
 

 
 
 
 
 
 

Figure 11: Above is an example of covers and spanning trees 
for a simple fractal data set. The covering elements are 
represented as green circles, while the spanning trees are 
shown as orange lines. Successive scales of our fractal 
analysis methods are demonstrated for each statistic. 

Figure 11A introduces a simple fractal data set to be analyzed 
with each statistic. In Figure 11B, the basic concept of fractal 
dimension is introduced via a series of covers produced by 
successively smaller covering elements. One simplified 
measure of fractal dimension can be achieved by measuring 
the slope of the log-log plot of the number of covering 
elements versus the inverse size of the covering element along 
the linear portion of this curve [8–9].  Figures 11C and 11D 
introduce the concepts of lacunarity and connectivity [10] 
across successively smaller covers as being measures of the 
maximum and minimum spanning trees, respectively. It is 
through these measures on these spanning trees that we are 
able to investigate the lacunarity and connectivity of data 
across varying length scales.  

In the present work, we have chosen to apply this new 
framework of unified fractal analysis to the copper tracer 
materials distributed throughout the weldments, as illustrated 
in Figures 4,6,7, and 9 above.  The MAPPER 2.0b software 
program developed at the INL is used to perform this task (this 
is an upgraded version of the software package discussed in 
reference [7], which runs on Mac OS X, Linux, or Windows), 
see Figure 12.  Using MAPPER, one can easily select a region 
within the large x-ray CT reconstructed data set, as shown in 
Figure 7, for analysis.  The selection process is shown in 
Figure 13.   Once a region for analysis has been selected, the 
user sets the thresholding limits, minimum and maximum 
grayscale values, which will allow for the conversion of the 
grayscale data set into a hard particle based, 3D data set, 

representing the trace copper material to be analyzed in our 
case, see figures 14 and 9.   

Figure 12: Mapper 2.0b, a distributed parallel processing 
software package currently under development at the INL for 
analysis of n-dimensional datasets using unified fractal 
statistics.  

Figure 13: Mapper 2.0b, region selection process graphical 
user interface (GUI).   

Figure 14: Mapper 2.0b, region selection process GUI.   



Once the regions of interest (in this case, those containing 
copper) have been selected and thresholded, analysis can 
proceed.  The results are shown as red-blue-green (RGB) 
translucent boxes overlaid on the data set.  Numerical values 
can also be obtained.  For the present proof-of-concept work, 
RGB overlays are sufficient, see Figures 15 and 16. 

Figure 15: Fractal analysis of the top side of the FSW’s 
copper tracer materials, which were isolated using the x-ray 
CT system for the reconstructed region shown in Figure 14. 

Figure 16: Fractal analysis of the bottom side of the FSW’s 
copper tracer materials, which were isolated using the x-ray 
CT system for the reconstructed region shown in Figure 14. 

 

Note that Figures 15 and 16 show a richness of RGB color for 
the weld under analysis.  Although this weld had been 
assumed to be in steady state, such richness in colors implies 
that the structure of the copper tracer material is changing 
significantly along both the length and cross-section of the 
weld.  

Conclusions 

In this paper an experimental approach was used to verify the 
feasibility of using offline x-ray computed tomography to 
nondestructively analyze FSW and FSP flow patterns within 
the final weldments or processed material.  The feasibility of 
this method was demonstrated in the numerically quantifiable 
images obtained using the unified fractal statistics approach 
(shown here in Figures 15 and 16), which also may be 
presented in animated form for further visualization.  These 
fractal values are presented via a RGB heuristic visual 
overlay, which is more readily understood by the typical 
researcher not directly involved in fractals research –it is, in 
fact, more understandable to the authors as well, who are 
involved in fractals research.  The feasibility of performing 
such analysis in real time, i.e. during the welding process, is 
beyond the focus of the paper and seems very unlikely within 
the near term.  The unexpected richness of the RGB overlays 
indicates that what had been assumed to be a steady state FSW 
may not be, and this deserves further study.   Overall, x-ray 
CT and fractal analysis represent two new tools that the FSW 
and FSP community may exploit in future research efforts to 
understand and better control these processes. 
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